汽车域控制器行业深度研究智能化大趋势,相

哪家医院能够治愈白癜风 http://m.39.net/pf/bdfyy/

(报告出品方/作者:东北证券,李恒光)

1.供需驱动汽车智能化,目前仍处发展初期

1.1.供给端:造车新势力企业崛起,引领智能化趋势

年以来,新势力企业车型销量节节攀升,在中国市场,年1-11月特斯拉+蔚小理销量增长至49万辆。从公司市值来看,龙头企业特斯拉市值高达6.95万亿元遥遥领先,远超传统车企。

从国内市场份额的角度来看,新势力企业快速提升至4.0%,性价比驱动型合资品牌份额持续下滑,大众、丰田等品牌驱动型合资品牌年1-10月份额较年下滑超5%;在电动车领域这个反差则更加明显,年1-10月,新势力的渗透率迅速提升至28.4%,而燃油车领域市场份额高达65%的合资品牌在NEV市场仅有不到10%的份额。我们认为,随着电动智能化的进一步推进,传统合资车企若不能加快转型,生存空间将进一步被压缩。

新势力在智能化和科技感上的领先是其崛起的重要原因之一。硬件搭载上,特斯拉是最早开创中控大屏的供应商,通过取消传统按键,用15英寸中控营造极简科技感,同时自研自动驾驶芯片,算力达到tops,搭载8颗摄像头和12个超声波雷达,通过领先的视觉算法实现自动驾驶;国内新势力企业在硬件上则更为激进,如小鹏P7配备了13个摄像头(前三目、4颗ADAS摄像头、4颗泊车环视摄像头、1颗车内人脸识别摄像头、1颗行车记录仪摄像头)、5颗毫米波雷达、12颗超声波雷达,采用英伟达车载高性能SOCXavier,算力30tops,P5则已经实现激光雷达上车;蔚来、理想-年上市车型将实现算力超过tops。

基于上述硬件,新势力企业提供了更高级别的自动驾驶功能和更好的座舱体验。例如,特斯拉目前可以实现主动巡航、自动泊车、自动辅助导航驾驶、智能召唤、自动辅助转向/变道、交通信号灯识别等;小鹏XPILOT3.0自动驾驶辅助系统包括了常规的驾驶辅助(自适应巡航、车道保持、主动刹车)、NGP高速自主导航驾驶、自动泊车等功能;蔚来ES8搭载了具备语音交互系统和智能情感引擎的NOMI机器人,在周围配备了9.8英寸的数字仪表屏、11.3英寸的中控屏和10英寸的W-HUD,理想ONE汽车座舱创新地采用四屏交互系统和全车语音交互系统,在视觉上给人带来震撼感受,提升了用户的驾乘体验。

1.2.需求端:消费升级+购车群体年轻化,对汽车智能化的需求提升

从需求端来看,有几个维度的底层逻辑推动汽车智能化需求的提升:1、千人保有量提升后,购车群体从首购转向增换购,推动消费升级进而提升汽车智能化的需求;2、购车群体由70后、80后向90后、00后转变,成长/生活环境被各种互联网信息技术笼罩,对汽车有更强烈的科技和智能化属性要求;3、用户重视智能汽车技术,且有较高付费意愿。

具体来看:汽车消费由首购转向换购,消费升级提升智能化需求。根据世界银行披露的数据,年中国千人拥车量为辆,相较于21世纪初的个位数保有以及年50辆左右有非常大的提升,汽车进入家庭阶段已经基本完成,市场由首购逐渐转向增换购。根据SIC的预测数据,年将有64%的汽车消费为增换购,年这一比例将高达78%。增换购将推动汽车的消费升级,购车动因除了满足基本空间、动力需求之外,科技感和智能化等把玩性需求将提升。

汽车消费群体年轻化。根据SIC预测数据,年90年代以后的购车群体占比26%左右,到年这一比例将快速提升至38%,年将有超过52%的购车用户为90年代后出生人群。90后、00后这群人正好经历了4G、5G、大数据、人工智能等新兴科技驱动的全社会的数字化转型,典型例子就是手机全面由传统的键盘式诺基亚手机向全面屏智能手机升级,映射到汽车消费场景,其对大屏、科技、智能的诉求会远高于70、80后的购车群体。因此,随着90后、00后逐步成为购车主力人群,汽车智能化的需求将进一步爆发。

消费者重视智能汽车技术,有较强的支付意愿。根据麦肯锡汽车行业消费者调查数据,超过8成消费者认为辅助/自动驾驶以及智能网联功能重要,且有相当比例的用户对相关功能有支付意愿。此外针对OTA功能,69%的受访者都认可通过OTA升级车辆功能的重要性,其中有62%的受访者愿意为之付费。

1.3.目前仍处于智能化渗透的初期

1、政策目标:年11月国务院办公厅印发的《新能源汽车产业发展规划》提出年高度自动驾驶汽车实现限定区域和特定场景商业化应用,年高度自动驾驶汽车实现规模化应用。此外,根据《中国智能网联汽车发展路线图2.0》,年L2+和L3级智能网联汽车渗透率持续增加,年达50%,年超过70%。

2、发展现状:

智能座舱方向,当前渗透率较低,明年有望快速提升。根据前瞻产业研究院和ICVTank的统计数据,年全球智能座舱域控制器出货量仅80万套,据Marklines统计年全球乘用车销量超万辆,渗透率仅1%;另根据专家调研信息,目前国内智能座舱的渗透率在10-20%左右。因此,无论是全球市场还是国内,智能座舱的渗透率仍然处于较低水平。根据亿欧的统计资料,以是否支持OTA升级作为是否满足智能座舱的重要参考标准,中国年前10个月新发布车型(含改款)中智能座舱渗透率为50.6%,这意味着国内当下正处于智能座舱边际快速渗透的状态,随着这些新车型明后年起量,将显著提升智能座舱的渗透率,海外市场同理。

自动驾驶方向,目前仍处于L2级自动驾驶的导入期。根据中国智能网联汽车产业创新联盟披露数据,年1-9月L2级自动驾驶渗透率有较大幅度提高,5月以来渗透率超过20%,相较去年同期提高接近10个百分点。预计年全年L2级自动驾驶渗透率将达到20%,整体而言渗透率水平仍然较低。

全球主流车企正密集研发L3级以上自动驾驶。从全球车企自动驾驶量产时间表可以看到,当前正处于车企密集研发L3级自动驾驶的阶段,一般自动驾驶先在高端旗舰车型上搭载,渗透到品牌内主流车型仍需要一段时间,预计明年L2级渗透率将快速上升。

随着智能汽车不断渗透、升级,产业链核心标的将迎来中长期牛市。复盘智能手机的发展历程,随着智能手机渗透率的不断提升以及硬件、软件的不断升级,整个产业链蓬勃发展,相关细分领域龙头公司迎来爆发。我们认为智能汽车产业链正在复刻消费电子的发展历程,随着汽车的核心竞争领域迁移至核心硬件(芯片、传感器、域控制器)、软件和操作系统等领域,相关公司将迎来长期爆发。(报告来源:未来智库)

2.智能化升级需要依托于全新的电子电气架构

2.1.EE架构升级的背景

在传统的分布式汽车电子电气架构中,对于车辆中的传感器与各种电子电气系统的信息传输与控制都由分布式汽车电子控制器(ECU)完成,随着汽车电子化程度的提高和功能的多样化,分布式架构与ECU的局限性对于车辆的生产成本、功能实现、未来发展都提出了挑战,更加集成化、智能化的解决方案——域控制器与域内中心化架构则应运而生。以下几点为域控制器逐渐取代ECU的主要动因:

(1)随汽车电子化与智能化的发展,ECU数量与线束数量成为成本与车重负担

在分布式架构中,ECU被运用在制动系统、变速系统、悬架系统、安全系统、驱动系统等方方面面,几乎车辆的每一个独立功能和传感器都需要配备一个ECU。随着目前汽车的电子化程度的提高与智能化的提高,单车中的ECU数量不断提升。年,中国汽车单车ECU数量为25个,目前在高端车型与智能化程度高的车型中主要ECU的数量达到多个,加上一些简单功能的ECU总数可以超过个。自动驾驶与其他智能化模块的应用使车辆需要更多的传感器(如摄像头、雷达)与处理器,如果仍然采用分布式架构来实现,将使汽车ECU数量大幅提升,推动成本上升。

除此之外,同一车辆上的不同ECU之间也需要通过CAN和LIN总线连接在一起,因此ECU数量的增多也导致了总线线束的数量和复杂程度的大幅提升。总线线束的增加首先会增加车重,同时由于线束的主要材料为铜,线束的增多会较显著地提高单车成本。域控架构将模块内多个ECU的功能集成到了一个域控制器中,可以很大程度地控制ECU数量,简化线束。

(2)分布式架构信息传输能力有限,无法满足自动驾驶等复杂智能功能

传统的分布式架构中ECU之间的通讯能力有限,大多通过CAN通讯、LIN通讯、FlexRay等,数据的传输速度非常有限,最高只能达到约20兆Bps每秒。在自动驾驶中,信息需要被实时传输和处理,一个摄像头产生的数据量就会达到兆Bps每秒,L3以上级别的自动驾驶中运用到的Lidar激光雷达则会产生大于1GBps每秒的数据量,无法通过分布式架构实现信息的实时传输。

域控制器的应用使数据信息可以在功能模块内通过中央网关以以太网协议进行传输,达到千兆甚至万兆的信息传输速度,对于自动驾驶等复杂智能功能的实现至关重要。因此,车内通信架构的升级也须基于域控架构实现,未来车载以太网将成为汽车骨干网。

(3)分布式架构无法满足自动驾驶的高算力需求

汽车智能化需要车辆中的控制器具备足够的算力来实现大量的信息处理与运算,以自动驾驶功能为例,L2+级别以上的自动驾驶需要至少50TOPS的算力,L3级别以上的自动驾驶需要TOPS以上的算力,L4级别则需要~TOPS的算力,这样的高算力要求是分布式ECU完全无法达到的,而自动驾驶域控制器在配备了高算力的芯片之后就可以满足各种汽车智能化的信息处理与运算要求。

同时,供应商在对全车的各个ECU的设计中都会对算力留有冗余,并且各个ECU之间存在功能的重叠,从整车的视角来看就浪费了大量的算力。而域控制器的冗余留存是针对于整个域的,将冗余的重叠与算力的闲置最小化。

(4)域控制器实现了软硬件的解耦,实现了软件的OTA

在传统的分布式ECU架构中,各个ECU之间通过CAN、LIN总线进行点对点数据传输,通信方式在汽车出厂时已经确定。在智能网联汽车中,大量的功能需要ECU间的协调工作来实现,当前ECU间基于信号的点对点通讯将会变得异常复杂,且不具备灵活性和扩展性,微小的功能改动都会引起整车通讯矩阵的改动。

因此,联合电子将SOA引入到当前汽车软件设计中,车辆功能被以面向服务的设计理念架构为不同的服务组件,有别于面向信号的传统架构,SOA中的每个服务都具有唯一且独立的身份标识,并通过服务中间件完成自身的发布,对其他服务的订阅以及与其他服务的通讯工作。此外由于其“接口标准可访问”的特性,服务组件的部署不再依赖于特定的操作系统和编程语言,实现了组件的“软硬分离”,软硬件的升级调整不会影响到整个网络,从而提升汽车功能延展性。

2.2.EE架构升级的方式

博世将汽车电子电气架构的演进分为三大阶段:分布式架构、(跨)域集中式架构、车辆集中电子电气架构,每个大阶段中细分为两个小阶段,从低阶到高阶依次为:模块化(每个功能由一个独立的ECU实现)、集成化(不同的功能集成到一个ECU来实现)、域内集中(域控制器分别控制不同的域)、跨域融合(跨域控制器同时控制多个域)、车辆融合(一个车载中央计算器控制全车的域控制器)、车辆云计算(更多的车辆附加功能由云计算实现)。

所谓“域”即控制汽车的某一大功能模块的电子电气架构的集合,每一个域由一个域控制器进行统一的控制,最典型的划分方式是把全车的电子电气架构分为五个域:动力域、车身域、底盘域、座舱域和自动驾驶域,具体分工如下:

1.动力域控制器主要控制车辆的动力总成,优化车辆的动力表现,保证车辆的动力安全。动力域控制器的功能包括但不限于发动机管理、变速箱管理、电池管理、动力分配管理、排放管理、限速管理、节油节电管理等;2.车身域控制器主要控制各种车身功能,包括但不限于对于车前灯、车后灯、内饰灯、车门锁、车窗、天窗、雨刮器、电动后备箱、智能钥匙、空调、天线、网关通信等的控制。

3.底盘域控制器主要控制车辆的行驶行为和行驶姿态,其功能包括但不限于制动系统管理、车传动系统管理、行驶系统管理、转向系统管理、车速传感器管理、车身姿态传感器管理、空气悬挂系统管理、安全气囊系统管理等;4.座舱域控制器主要控制车辆的智能座舱中的各种电子信息系统功能,这些功能包括中控系统、车载信息娱乐系统、抬头显示、座椅系统、仪表系统、后视镜系统、驾驶行为监测系统、导航系统等;5.自动驾驶域控制器负责实现和控制汽车的自动驾驶功能,其需要具备对于图像信息的接收能力、对于图像信息的处理和判断能力、对于数据的处理和计算能力、导航与路线规划能力、对于实时情况的快速判断和决策能力,需要处理感知、决策、控制三个层面的算法,对于域控制器的软硬件要求都最高。

不同的域控制器产品在技术要求上会存在差异性。对于自动驾驶和座舱域控制器而言,芯片性能、操作系统级算法要求比较高;对于动力域、底盘域和自动驾驶域因为涉及安全的部件较多,所以功能安全等级要求高。

目前汽车厂商的电子电气架构升级都仍处于域集中式架构阶段,少数领先的车厂已经发展到了跨域融合阶段:大众:MEB平台采用三大控制器来对全车进行控制与功能实现:1、ICAS1车辆控制域控制器,集成了车身控制管理、驱动系统管理、行驶系统管理、电动系统管理、灯具系统管理、舒适系统管理等诸多功能,将车身域、动力域、底盘域三域融合;2、ICAS2智能驾驶域控制器,对于自动驾驶功能进行实现,拥有强大的信息处理与计算能力,与多个传感器紧密相联;3、ICAS3智能座舱域控制器,包括了实现中控系统、车载信息娱乐系统、抬头显示、座椅系统、仪表系统、后视镜系统、驾驶行为监测系统、导航系统等各种功能所需的硬件与软件。目前基于MEB平台的ID.系列车型可以通过OTA更新最多35个控制单元。

特斯拉:是汽车电子电气架构升级的领跑者,最早步入跨域融合阶段,Model3的电子电气架构中已经基本不按照功能来进行域的划分,全车只有CCM中央计算模块、BCMRH右车身控制模块、BCMLH左车身控制模块三个域控制器。CCM中央计算模块集成了自动驾驶域、智能座舱域、通信系统域的功能,将三者融合做统一的集中化的运算处理与控制。左右车身模块则将车身的不同功能域以区域划分并融合,两者分别对左车身和右车身区域的动力系统、转向系统、制动系统等进行控制,同时对各种车身功能进行控制和管理,包括但不限于热管理、自动泊车辅助系统、灯光系统、门锁系统、车窗系统等。

长城:年量产的GEEP3.0电子电气架构为典型的域内集中式的架构,其中包括动力与底盘域控制器、车身域控制器、智能座舱域控制器与智能驾驶域控制器。年长城汽车计划推出的GEEP4.0架构则是跨域融合式的架构,将对全车控制集成在中央计算、智能驾驶与智能座舱三大核心计算平台上,并以多个区域控制器辅佐核心计算平台对于车身各个区域与功能的细化控制。

2.3.域控制器相关增量市场空间

2.3.1.汽车软件:汽车产业链未来的价值核心

汽车将逐渐不再只是纯粹的交通工具,而具备更多的电子产品属性。EE架构的升级使汽车控制器中的软硬件解耦、使软件可以实现OTA、使车载控制器的运算能力与信息传输能力大幅提高,甚至可以采用云计算来增强运算能力,这些变革都为“软件定义汽车”与汽车的高度智能化发展提供了必要的条件,使汽车行业的发展突破了由硬件主导的阶段,软件成为汽车产业链未来的价值核心。从软件代码量对比来看,智能汽车的代码量已经达到1亿行,远高于PC的Windows系统万行,手机安卓系统1万行。

智能汽车软件分为三层结构,包括:1、底层系统软件层,包括虚拟机、系统内核、AUTOSAR等;2、应用中间件和开发框架,包括功能软件、SOA等,位于操作系统、网络和数据库之上,应用软件的下层,为应用软件提供运行与开发的环境,帮助用户灵活、高效地开发和集成复杂的应用软件;3、上层应用软件层,包括智能座舱HMI、ADAS/AD算法、网联算法、云平台等,用于实际实现对于车辆的控制与各种智能化功能。APAUTOSAR和中间件OS将是众多Tier1的发力重点。

操作系统:是管理和控制车载硬件与车载软件资源的程序系统,主要包括两种,1)基础汽车操作系统:如QNX、Linux、WinCE、Android等,包含所有的底层组件,如系统内核、底层驱动等,有的还包含虚拟机,具体应用上,目前75%的自动驾驶域控制器的底层操作系统使用的是QNX系统;2)定制型汽车操作系统:指在基础型操作系统之上进行深度定制化开发(包括系统内核修改),最终实现座舱系统平台或自动驾驶系统平台,百度车载OS,大众VW.OS属于此类。国内主要的汽车操作系统玩家包括TINNOVE梧桐车(腾讯系)、斑马智行(阿里系)、国汽智控、百度和华为等,主机厂自身开展OS研发难度非常大。

虚拟机(Hypervisor):一种运行在基础物理服务器和操作系统之间的中间软件层,可允许多个操作系统和应用共享硬件,主要应用在座舱领域。在座舱域控制器中,由于安全要求不同,需要运行不同的操作系统(比如Linux/QNX负责实时性仪表(ASILB)、安卓负责信息娱乐系统(ASILA)以及弱ADAS功能(ASILC)),通过Hypervisor技术可以将不同的操作系统运行在同一个主控芯片,实现“一芯多屏”功能。目前常见的虚拟机包括黑莓的QNX、英特尔主导的ACRN、Mobica为代表的XEN、松下收购的OpenSynergy的COQOS、德国大陆汽车的L4RE,法国VOSyS的VOSySmonitor等。

AUTOSAR(AutomotiveOpenSystemArchitecture):由于车辆功能的复杂性提升,为了解决集成不同供应商组件面临的兼容性问题,3年由宝马、大众、博世等6家企业联合成立AUTOSAR联盟,旨在实现汽车软件开发的标准化,核心思想是通过软硬件之间插入中间件,软硬件通过接口相互访问,在保证接口不变的情况下,各自内部可以进行调整,解决兼容性问题以及提高软件的复用性。CPAUTOSAR(ClassicplatformAUTOSAR)是经典标准版本,采用面向信号的软件架构,所有模块都已明确规定,基于C语言开发,只支持静态配置,因此虽然能够较为方便地更新功能,但是功能和硬件之间点对点通信,依旧存在对应关系,难以适应集中式架构要求。APAUTOSAR(AdaptiveplatformAUTOSAR)采用SOA软件架构,除API之外,更少的模块被明确规定,基于C++开发,使得各个硬件能够向多个软件订阅服务,以执行复杂操作。为此,自适应标准不再使用硬件抽象层,改以功能群组,在功能实现过程中进行动态配置,以实现前述“多对多”的数据通信。软件与硬件的对应关系完全打破,软硬件实现深度解耦。

中间件:中间件是位于底层操作系统和上层应用程序之间的软件模块,集成了AUTOSAR自适应平台和安全通讯模块,直接与操作系统交互,通过最小化接口的方式,保证了与系统所有部分的快速通信,显著降低OEM系统集成的复杂性。类似EB、Vector、TATA、Mentor、ETAS、KPIT等传统基础软件平台供应商和TTTechAuto、东软睿驰等后来者都在抢抓中间件市场机遇。对于OEM来说,底层基础软件非常复杂,搭建整建制团队成本过高,一般而言,其软件

研发更多集中在上层差异化应用上,而基础软件(AUTOSAR)和中间件交由供应商集成,可更快速实现产品交付。

上层应用软件:上层的应用软件层是OEM重点研发打造差异化的领域,比如座舱HMI、自动驾驶等。自动驾驶域控制器上层的应用算法较为复杂,包括场景算法(涵盖数据感知、决策规划、控制执行等)、数据地图、人机交互(HMI)等,其中场景算法最为复杂,典型的包括感知、决策、执行三个维度的算法,进而实现各类场景下的自动驾驶功能,如L2级自动驾驶的典型功能全自动泊车(APA)、领航辅助等。目前整车厂、传统Tier1、初创企业、科技巨头以及独立的软件企业等在上层软件领域都在积极发力。

汽车软件商业模式:智能汽车软件的商业模式一般采用“IP+解决方案+服务”的模式,Tier1软件供应商的收费模式包括:(1)一次性研发费用投入,购买软件包,比如ADAS/AD算法包;(2)单车的软件授权费用(License)、Royalty收费,按汽车出货量和单价一定比例分成,例如车载音乐、视频软件等;(3)一次性研发费用和单车License打包。国内的大部分的企业都是按照项目形式或者是一次性NRE的形式收费,无论是卖多少辆车都按一个价格收费,如中科创达、诚迈科技基于高通等芯片平台提供智能驾驶舱适配性开发。只有细分领域国际头部供应商会采用第三种收费模式,既收取开发费NRE,还根据每一辆车收license费用。

市场空间:根据麦肯锡的预测,随着软件定义汽车的推进,年智能驾驶软件规模将高达亿美元,信息娱乐及通信等相关软件功能规模将达到亿美元,操作系统与中间层的市场规模将达到80亿美元。

2.3.2.域控制器:智能汽车计算中枢,产业链竞争高地

从单车价值量看,自驾域单车价值量较大。根据专家访谈,目前市面L3级以上的自动驾驶域控制器的单价在0元~0元左右,L2级自驾域单价0元左右;座舱域控制器的单价在0元左右;底盘域由于需要达到ASIL-D安全等级,故价格和座舱域相当,也是0元左右;车身域控制器单价在元左右。

国内外巨头纷纷布局自动驾驶域控制器。目前自动驾驶域控制器主要有四类玩家:1、头部新势力企业,如特斯拉自研自动驾驶芯片,蔚来自研域控制器然后找第三方代工;2、国际Tier1,自己与芯片商合作,做方案整合后研发域控制器并向整车厂销售,例如大陆ADCU、采埃孚ProAI、麦格纳MAX4等;3、域控软件供应商,例如TTTech与上汽集团合资成立了创时智驾,为上汽成员企业配套自动驾驶域控制器产品;4、本土Tier1,根据英伟达在10月云栖大会上公布的信息,目前采用英伟达Orin系列方案的车企客户包括奔驰、沃尔沃、蔚来汽车、小鹏汽车、理想汽车、上汽智己以及R汽车,德赛西威拿到了其中大部分的域控制器定点订单。此外还有华为、经纬恒润、福瑞泰克等企业布局了这一领域。

市场空间:根据产业链调查,自动驾驶域控制器方面,预计国内市场年出货量将超万套,随着支持L3级自动驾驶的域控制器逐渐放量,平均价格有望从现在0元左右提升0元以上;座舱域控制器方面,预计年出货量将超万套,随着入局者增多行业区域成熟,价格略微下滑。预计国内市场年座舱+自动驾驶域控制器市场规模将超亿元。

2.3.3.智能座舱:基于座舱域控架构,座舱产品市场迎来扩容

智能座舱的主要构成包括车载信息娱乐系统、仪表盘、抬头显示(HUD)、流媒体后视镜、语音交互系统等HMI交互产品,具体功能基于座舱域控制器实现,未来智能座舱还有望和智能驾驶领域打通。

从实际新车型搭载情况来看,中控大屏、全液晶仪表和语音交互已经成为智能汽车的标配。年10英寸以上的中控屏幕渗透率达30.1%,HUD渗透率达10.5%,语音识别系统渗透率已经高达65.7%。这一趋势在电动车领域表现更明显,截至年10月,NEV中全液晶仪表搭载率已经高达61.4%,语音识别系统更是高达73.8%。

伴随人机交互体验的升级,座舱产品的价值量将翻倍提升,座舱市场空间将迎来扩容。在传统座舱中,单车价值量根据豪华程度不同会呈现较大差异,平均而言机械仪表盘+车载信息娱乐系统等单车价值量在1元左右;而在智能座舱时代,包括中控屏、液晶仪表盘、HUD和流媒体后视镜等主要部件,单车价值量有望大幅提升至元以上。我们预计年市场规模将超亿元,复合增速约13.5%,其中全液晶仪表和HUD领域增长空间最大。(报告来源:未来智库)

3.EE架构升级将加速产业链价值重构

3.1.智能汽车产业链分工变化,智能硬件和软件成为价值高地

EE架构升级驱动汽车产业链边界拓宽且渐趋模糊。为了满足智能座舱和自动驾驶需求,主机厂原本基于BOM的研发组织模式发生改变,开始更大范围地考虑各级供应商之间的角色关联与能力适配,由于汽车智能化涉及各类软硬件的集成以及解决方案的提供,导致产业边界不断拓宽且渐趋模糊。Tier1的优势在于强大的集成能力与具有一定的系统定制化的能力,以域控制器等整合的软硬件产品为基础拓展其他业务模式,例如软件解决方案,通过强化软件实力提升供应系统解决方案的能力,争取向Tier0.5转变。

主机厂在软件上谋求差异化。软硬分离意味着传统Tier1软硬全包的时代即将结束,车企需要一个通用、标准化的硬件平台加基础软件,然后车企自身专注应用层软件开发,谋求差异化。传统车企主要通过成立子公司、成立软件研发部门、与供应商合作三种模式加码汽车软件。例如,年初上汽集团筹备成立上汽集团软件中心,聚焦“云管端一体化全栈解决方案”,自主“中央集中式电子架构,SOA软件平台和开发者平台,数据工厂”等核心技术体系;大众设立汽车软件CarSoftware新部门;宝马和诚迈科技成立合资公司从事软件开发业务。具体软件自研领域则取决于车企对软件带来的差异化和内部资源能力的权衡。

汽车产业附加价值向微笑曲线两端转移,智能化硬件(域控制器)及软件服务成为价值高地。对于主机厂而言,智能驾驶、智能座舱、智能车联等核心技术能力的构建与应用成为其提升产品差异化优势与品牌竞争力的关键所在,决定其在新型汽车产业生态中的护城河与价值链位置。对于零部件企业而言,传统模式下提供封闭式软硬集成产品的方式将会彻底改变,只提供机电一体化产品的供应商会逐步被边缘化,更高的价值量来自于域控制器和软件。

3.2.OEM选域控制器首先看芯片,其次看Tier1量产能力

3.2.1.OEM选域控制器本质上是选芯片,SoC的算力是关键指标

从目前车企的做法来看,以主控芯片为代表的高性能硬件会率先上车,而操作系统及应用软件等则会随着算法模型不断迭代持续更新,逐步释放预埋硬件的利用率,从而实现软件定义汽车。因此,芯片作为域控制器的核心“大脑”,为域控制器产品的差异化提供了最大空间,主机厂选择域控制器的本质就是选芯片。

(1)自动驾驶芯片:高壁垒,英伟达(L3)和Mobileye(L2)处于第一梯队

自动驾驶芯片的高壁垒:1)对于自动驾驶的高算力需求的满足。目前,只有少数芯片厂商如英伟达、高通、华为、英特尔等拥有TOPS以上算力的自动驾驶域芯片;2)对于不同类型的数据信息的处理与运算能力。自动驾驶域控制器需要同时处理与运算数字型数据、图像数据、导航数据等多种多样的数据类型,同时高级别的自动驾驶域控制器还需要具备深度学习能力。在目前应用最广泛的英伟达Orin芯片中,就同时集成了六种不同类型的处理器来实现对不同数据类型的处理,包括CPU、GPU、DLA深度学习加速器、PVA可编程视觉加速器、ISP图像信号处理器、立体/光流加速器;3)对于安全性的满足。用于自动驾驶域控制器的芯片需要满足车规级标准,同时要留有一定的冗余以确保在特殊情况下基本的功能仍然能正常运行;4)在确保算力的基础上对于功耗的控制。高功耗会导致域控制器的温度升高,进而导致芯片的实际运算能力下降。

在自动驾驶芯片领域,英伟达以及背靠英特尔的Mobileye处于第一梯队,德州仪器、高通、华为海思、地平线处于第二梯队,上升攻势不容小觑。重点芯片厂商:1)英伟达:目前英伟达的Orin芯片是技术最为成熟的自动驾驶域控制器芯片,在L2+以上的自动驾驶领域具有较大的技术优势,目前国内的主机厂要进行L3与L4级别的自动驾驶的开发基本只能选择英伟达的芯片。目前奥迪车型、特斯拉前期车型、小鹏、威马,以及大量的主流新能源乘用车都是基于英伟达的Xavier或者Orin芯片,算力级别主要是30TOPs,年推出的蔚来ET7、小鹏G9等高端车型可能高达-Tops。目前英伟达占据了自动驾驶芯片领域30%以上的市场份额,主要集中在L3级自动驾驶。

2)Mobileye:主要是支持L2及以下的自动驾驶,市场占有率很高,有大量的配套量产车型,如Q4、Q5芯片依然在蔚来车型上使用。Mobileye芯片和智驾软件绑定较为紧密,虽然芯片算力不高,但软件支持很好,能提供良好的驾驶场景体验。但是因为黑盒交付模式,限制了车企的自主创新和差异化竞争,逐步被英伟达的开放生态颠覆。

3)高通:高通的强项是CPU,在手机市场上和智能座舱市场上都有极强的竞争力,但在GPU方面的能力积累不足,自驾芯片GPU核占的权重比较大,故竞争力较弱。年底推出了Ride平台,可提供不同等级的算力,包括以小于5瓦的功耗提供的L1级别的10TOPS算力,以及多瓦功耗、TOPS算力的配置下,整个系统的功耗差不多会在多瓦左右,但这更多是瞄准年之后的车型。

4)德州仪器:德州仪器的芯片在L2.5以下的自动驾驶中的市场份额较大,产品线较为丰富但是算力集中在8Tops-48Tops,不及英伟达的芯片,但是芯片的优化、成熟度与开发度非常好(TDA4芯片)。

5)国内芯片厂商:地平线征程系列5,算力在TOPs,芯驰V9也是同类竞品,此外还有黑芝麻的芯片等。国内芯片厂商成长很快,众多车企考虑地平线、黑芝麻等作为back-upplan,避免出现芯片供应问题;同时国际芯片大厂研发部门不在国内,车企难以从国际芯片厂商学习芯片相关技术,这是本土芯片厂商的优势。

(2)座舱芯片:高通占据绝对领先优势

在智能座舱计算芯片领域,高通在产品力与高端市场占有率上具备绝对领先优势,三星、英特尔、瑞萨等厂商紧随其后,中低端车型市场上以恩智浦、德州仪器为主。以高通、三星为代表的消费电子厂商可以依靠下游出货量较大的手机等产品来分摊高昂的研发成本,在制程升级方面具备更高积极性以及在开发高算力产品方面具有显著的技术优势,因此在中高端座舱SoC份额提升较快。传统汽车芯片供应商出于对研发成本的考量,制程、算力升级积极性较差。高通在座舱芯片领域强势复制手机行业上的成功,目前在国内新兴旗舰车型上几乎垄断,市场份额高达70-80%,SA为旗舰车型标配。

车企芯片选择策略:车企会根据自身产品定位去选择合适的芯片。蔚小理等新势力希望打造激进的自动驾驶功能,会选择英伟达Orin芯片,而价位带稍低的长城汽车会在其高端品牌WEY(含坦克)采用高算力芯片,在哈弗、欧拉等品牌采用性价比更高的芯片。在座舱领域,国内头部车企旗舰车型普遍选用高通芯片,大众MQB平台出于成本角度考虑选用瑞萨芯片,MEB平台采用三星AutoV9芯片。

综上,我们认为,两类Tier1能在未来的竞争中获得很好的优势,第一种是与头部芯片企业深度绑定,如经纬恒润与Mobileye、中科创达与高通、德赛西威与英伟达的组合,将能充分受益于行业的爆发;第二种是提供适配多种芯片的平台化解决方案提供商,如均胜电子、经纬恒润、东软睿驰等企业。

3.2.2.量产能力成为OEM选择供应商的核心依据

域控制器壁垒主要包括制造层面的技术壁垒和时间壁垒:

1、技术壁垒:(1)对于域控制器的电子零配件的开发能力。对于电子零配件的开发需要搭建相应的测试实验室,比如射频实验室与无声实验室,同时还需要有相应的供应链管理体系。(2)工程化能力,对相关产品量产与成本控制的能力。产品的高效量产需要搭建成熟的生产线,需要对相关产品生产或工程设计的经验的累积,如高功耗域控制器的水冷散热设计等,也需要规模效应来控制成本。(3)软硬件整合过程中的校验与调试能力,需要调试设备和调试经验的积累。

2、时间壁垒:对于域控制器的制造方来说,并不是一拿到芯片就可以进行域控制器的整合,首先需要针对于该芯片做周围的电子元器件的搭建和通讯的调试,经过a样、b样、c样的测试,再去做面向量产的域控。a样测试会基于这个板子去做物理性能、电气性能,包括一些车规稳定性、安全性最基础的验证,周期基本上需要4到6个月的时间;通过测试之后,开始启动b样,b样主要是在这个平台上把车厂自研的或第三方算法公司的算法下载下来,放到这个平台上去跑算法的性能,涉及10万公里的路测和30万公里的仿真测试,周期4-6个月;然后开始转向c样,第一是为面向量产做准备,第二就是把b样中的各种各样的问题进行解决、算法优化、

整个系统软件的稳定性、效率以及整个成本的控制,这个过程会涉及30~50万公里路测以及万公里的仿真测试。因此,整个域控研发量产流程需要花费18个月以上的时间,构成显著的时间壁垒。

综上,域控制器因其高复杂性,存在较高的技术开发难度,同时OEM非常看重产品的稳定性和可靠性,所以与域控厂商合作非常看重其是否有成熟的、经过市场考验的量产经验,所以有成熟量产经验的厂商将能更好把握未来几年的爆发。

3.3.终局:Tier1的价值将长期存在

行业初期各项技术并不成熟,车企会选择投入,但投入到一定边界之后,它们的投入就会下降。随着行业的成熟度逐渐提高,产品性能、功耗、稳定性、车规级方面等都满足要求,这时候车企更多会考虑成本,如果供应商能够提供成熟、更低成本的硬件产品,从商业角度来看肯定会选择供应商方案。

此外,不同类型车企对自研or外包决策存在较大差异,主流车企对成本敏感倾向于外购域控制器。现阶段自研域控制器的仅为头部新势力企业,这类车企有强烈的差异化诉求,同时有足够的资金实力和软件人才支撑做这个事;第二梯队主流国内外车企,自研or外购决策取决于内部资源和差异化能力的权衡,这类车企对成本非常敏感,倾向采购通用、标准化的硬件平台加基础软件,自研上层应用软件谋求差异化。这类车企是汽车销量的主体,为Tier1提供最大的发展空间;第三梯队是长尾车企,资源不够充足的OEM需要硬件、底层软件和应用层软件的打包服务。

行业终局:车企都在做智能汽车,站在用户层面的体验,做到80分还是90分差异不大,中长期来看,基础智能化有望成为汽车的标配,tier1的价值将长期存在。

4.域控制器相关重点软硬件企业

4.1.德赛西威:域控时代执牛耳者

4.1.1.德系血统+内生成长+全球布局,迎智能汽车发展腾飞期

回顾德赛西威从年公司成立至今已经超过35年历史,发展历程可以分为三个阶段:

1、起步期(-1年)

公司成立于年,由惠阳地区工业发展总公司(德赛集团的前身)、飞利浦汽车音响系统和香港金山工业集团联合创办中欧电子工业有限公司,主要为奥迪进入中国(年)做收音机的生产配套。公司年率先建立针对国内市场的产品开发部门,开启自主研发道路,以此为基础加大开拓国内市场的步伐。年德国曼内斯曼威迪欧入主飞利浦汽车音响系统,将德国的品质与务实带给了中欧电子。这15年的时间为公司积累了较好的生产制造和自主研发的经验。

2、成长期(2-年)

经历多次外方股权更迭后,中欧电子在2年更名为西门子威迪欧汽车电子(惠州)有限公司,外资西门子威迪欧持股70%,西门子威迪欧是当时全球领先的汽车电子产品供应商,惠州基地是西门子威迪欧认可的全球5个研发中心之一。在这一阶段,公司逐步建立起了国际化、系统化的研发、项目、质量管理和人才培养体系,逐步确立起以客户为中心,以技术为导向的理念,从最初来料加工到具备研发能力并拥有国际化管理水平,打入了众多中外车企供应体系。

3、飞跃期(-年)

内资反收购:公司年正式收购了西门子威迪欧外方70%的股权,正式更名德赛西威。当时德国博世收购了西门子威迪欧海外的业务,但是8年受全球金融危机的影响,德国大陆集团迫于自身压力,放弃了对中国业务的收购,德赛工业看到西门子威迪欧中国区业务表现良好,且核心团队非常稳定,便决定反收购,由此公司由一家外资主导的合资企业转变成了内资%控股的企业。

聚焦智能化产品和国际化布局:年自主发展以来,德赛西威不断加大研发投入,推出车载红外触摸显示屏、ADAS驾驶辅助系统等产品;同时也由国际本土化向本土国际化转变,具有“国际范”先天基因的德赛西威积极走出国门,不单是产品“走出去”,制造、生产、人才等也更加国际化,已在新加波、德国、日本、美国、马来西亚、波兰等地开设分公司或联合生产基地。客户层面也逐步开拓了更多自主品牌和国际品牌客户,甚至成为众多世界知名品牌的全球供应商。

公司形成智能座舱、智能驾驶和网联服务三大业务,契合智能汽车发展方向。经过30余年的发展,公司形成了智能座舱、智能驾驶和网联服务三个业务单元。1、智能座舱:包括满足驾驶者和乘客需求的产品,其中有仪表、显示、信息娱乐系统、车身控制等。2、智能驾驶:一是驾驶辅助,也即ADAS和L3;二是自动驾驶,面向L4和L5,公司在惠州、新加坡以及上海都有布局L4级以上的自动驾驶的研发团队,公司于年拿到了新加坡M1级开放道路自动驾驶测试牌照,可以在新加坡的开放道路进行路测。3、网联服务:包括车联网服务,比如蓝鲸网联系统、整车OTA技术、信息安全、平台运营等。运用这些专项的创新技术和系统,与终端硬件一起协同发展,共同协助车企提升品牌竞争力。

当下公司正处于新一轮业绩腾飞期。年以来整个汽车行业并不太景气,公司业绩进入平台期。自年开始,公司智能座舱业务重回增长轨道,智能驾驶业务逐步开花结果,自动驾驶域芯片IPU03顺利量产落地,成功搭载小鹏P7,多款车联网产品也顺利落地,年营收同比增长27.4%,归母净利增长77.3%。公司年业绩预告显示归母净利实现8-8.5亿元,同比增长54.40%-64.05%。公司建立智能座舱、智能驾驶及网联服务前瞻卡位优势,在智能汽车大趋势下迎来新一轮业绩腾飞。

4.1.2.员工持股平台+股权激励,激发企业创新活力

建立员工持股平台彻底解决利益分配问题,使得核心团队利益和公司利益高度一致。年德赛西威设立了公司经营管理层与核心研发团队持股平台——德欧投资,以员工持股平台的方式对员工进行股权激励。德欧投资由名经营管理层与核心研发人员共同出资.万元成立,出资金额全部用于对于原大陆汽车有限责任公司持有的德赛西威25%股权进行收购,即在收购后德欧投资的名出资员工共同按照各自出资比例持有共25%的德赛西威股权。年4月,德欧投资将所持的全部23.75%股份分别转让给惠州市威永盛投资咨询合伙企业(有限合伙)、惠州市威永昌投资咨询合伙企业(有限合伙)、惠州市威永杰投资咨询合伙企业(有限合伙)、给惠州市威永德投资咨询合伙企业(有限合伙)、惠州市恒永威管理咨询有限公司,这五家公司均为员工持股平台公司并延续至今,对集团内共名经营管理层与核心研发人员进行股权激励,激励对象几乎覆盖了德赛西威的核心团队,大部分激励对象至今仍然在德赛西威中任职。

年股权激励:德赛西威在年11月26日正式施行《年股权激励计划》,授予名绩优管理人员与绩优技术及专业骨干共.4万股限制性股票,占总股本数0.96%,授予价格为48.03元/股,当日德赛西威收盘价为.15元/股。本次限制性股权激励计划的目标是帮助管理层平衡短期目标与长期目标、调动公司核心管理团队以及业务骨干的主动性与创造性、实现股东、公司和激励对象各方利益的一致,以最大化股东利益。

股权激励业绩考核目标主要条款为-年营业收入相对年增长不低于30%/40%/50%,达到条件可以分三个阶段解除限售。此外,公司还对各激励对象个人进行绩效考核,激励对象各年实际可解除限售的股份数量=个人当年计划可解除限售的股份数量×个人绩效考核结果对应的解除限售比例。对于个人的绩效考核将激励员工在各自的工作岗位中具有更高的主动性和创造性,推动公司整体业务发展。

除了激励司内员工,公司还不断引进外部优秀团队。在开放的理念下,整合全球的资源,在自身原来的团队以及原有技术的基础上引进外部领先团队,例如OTA、显示屏、自动驾驶等团队。

4.1.3.长期高研发投入,前瞻业务布局

长期高研发投入,业内领先。研发投入占比持续保持在8-12%,年超过12%,高于业内主要对标企业;研发人数从年的人增长到如今超0人,员工占比40%左右;全球设置7个研发分支机构,研发专利超2项:惠州是做整个量产研发配套;新加坡做自动驾驶预研和路测,团队30-40人;欧洲收购德国天线公司ATBB,从事天线相关产品研发;南京主要做智能驾驶(图像、毫米波)算法、平台类开发,少部分智能座舱研发,团队约人;成都负责车联网相关研发;上海和北京做主机厂相关研发配套。

战略性前瞻绑定英伟达。年德赛西威宣布跟英伟达合作,拿到国内Xavier的芯片代理,成为英伟达在全球5家代理商之一,其他4家为博世、大陆、采埃孚、维宁尔。

4.1.4.智能座舱:基盘业务,竞争优势明显

智能座舱业务是公司的基本盘业务,H1营收占比81.75%。年提出智能驾驶驾驶舱概念,至今已推出第四代,该系统具备高性能计算、人工智能引擎、多传感器处理和丰富网络连接能力,可支持领先的多屏联动、音效处理和AR等技术,为用户带来丰富的沉浸式交互体验。目前德赛西威在车载信息娱乐系统领域具备非常强的竞争力,年上半年国内市场份额为14.9%,位列第一。

代表产品:理想one。年德赛西威获得理想one智能驾驶舱订单,实现四屏交互。芯片方面:采用了高通的A芯片和德州仪器J6车规解决方案双芯片驱动方案;座舱操作系统:仪表盘和车辆功能控制面板采用Linux系统,强调稳定性和安全性;中控屏和副驾驶前方屏幕则采用了Android系统,以拓展娱乐功能。

座舱域控制器:瑞萨版本已量产,版本提前研发,与高通开展深度合作。年9月,奇瑞发布全新旗舰型SUV瑞虎8-PLUS,该款车型采用了德赛西威基于6核瑞萨RCAR芯片的座舱域控制器,采用双系统的软件架构。其中QNXHypervisor2.0虚拟机保障仪表功能安全,而Android9.0系统可让用户享受丰富的信息娱乐功能。奇瑞新款旗舰车型捷途X90同样搭载德赛的座舱域控制器。目前德赛的SAP座舱平台还处于研发阶段,没有正式搭车量产。年1月4日,德赛西威与高通技术公司宣布,双方将基于第4代骁龙座舱平台,共同打造德赛西威第四代G7PH智能座舱系统,该系统具备高性能计算、人工智能引擎、多传感器处理和丰富网络连接能力,可支持领先的多屏联动、音效处理和AR等技术,为用户带来丰富的沉浸式交互体验。

不断开辟新客户:智能座舱领域,年上半年拿到了一汽丰田、长城、吉利、奇瑞等智能座舱类产品的订单,其中长城获取了10寸、12寸大屏化的产品订单,涉及坦克和未来的炮、沙龙等车型;吉利目前座舱产品覆盖的车型也比较丰富,包括仪表和12寸屏产品,未来也会在远景、星越、豪越、帝豪等车型中量产。

4.1.5.智能驾驶:在域控制器、传感器和算法领域形成了极具前瞻性的卡位优势

公司已建立高性价比和高性能两套域控制器解决方案。IPU01:主要是做环视和泊车的控制器,目前出货量已达百万级;IPU02:为01的升级版,融合了高低速的一些功能,价格0元左右;IPU03:基于英伟达Xavier芯片的IPU03已在小鹏P7上量产,价格0元左右;IPU04:基于英伟达Orin-X的IPU04是目前量产智能驾驶域控制器中的最高算力水平,已获得理想、蔚来、威马、智己、上汽R品牌等10家企业定点。IPU01/02为高性价比方案,在有限的成本范围提供一定功能的ADAS应用,帮助车企快速实现功能搭载;IPU03/04是高性能方案,迎合高级别自动驾驶功能需求。IPU02和IPU04是公司未来主推的两个版本。结合我们“厂家选域控制器首先看芯片,其次看量产能力”的观点,德赛西威将充分受益英伟达在自动驾驶芯片领域的领头羊地位,同时通过量产能力不断扩大客户群体,将充分享受未来自动驾驶域控制器的爆发性增长。

德赛西威在英伟达Orin领域占据了18个月到两年的先发优势。企业拿到英伟达芯片之后首先要做周围的电子元器件的搭建、DDR选型、通讯调试、ROM和RAM的选型调通等,需要耗费大量时间;其次要了解QNX和Linux底层系统和芯片架构的不同,需要工程人员和技术人员和英伟达进行多次的对接,学习英伟达的工具链,这些都需要一定的时间。同时硬件的生产要求也比较高,硬件的外壳要做到IP67的标准,因为高算力芯片的域控制器功耗容易超W,升温很快需要用到水冷降温。英伟达的工具链可以在不同代自动驾驶芯片之间复用,德赛基于前期和英伟达的深度合作占据了先发优势。

德赛西威在同步布局传感器和自动驾驶算法。传感器方面,已实现摄像头和毫米波雷达量产,超声波雷达通过投资奥迪威争取在业务、技术端的取得协同突破;自动驾驶算法领域,公司全方位布局L1泊车至L4智能辅助驾驶算法,低速领域,根据高工智能汽车统计数据,德赛在环视和泊车领域的国内市场份额已经高达20%左右;高阶自动驾驶算法领域,采取对外投资+合作的方式,如投资momenta、纽劢科技、日本Ficha等,谋求更大突破。主机厂看重企业提供产品的多样性,除了域控制器还有摄像头、毫米波、超声波、激光雷达、Tbox、软件算法等一系列产品的能力,德赛西威具备领先优势。

智能驾驶测试场:惠南工业园涵盖了智能网联研发中心、工业4.0工厂、立体仓库、国家级实验中心以及国内第一家自建的智能驾驶试验场。其中智能驾驶测试场占地00㎡,为德赛西威各类传感器、辅助驾驶、代客泊车、L3-L4级的自动驾驶、高精地图、车路协同等等产品提供开发验证的真实场景。

结合以上业务,公司已成功地在自动驾驶域控制器、传感器和算法领域形成了极具前瞻性的卡位优势。自动驾驶域控制器领域深度绑定英伟达,引领行业发展;传感器领域,在摄像头、超声波以及毫米波雷达三大主流规模化前装量产领域具备了完整的产业链布局;算法领域通过自研+投资合作的形式打造高低速融合的产品交付。通过上述全栈布局,最终形成“域控制器+传感器+软件算法+5G-V2X”的商业闭环,通过集成提供高性价比的全套的解决方案。我们认为,在未来随着L2+车型渗透率的提升,L3级以上车型逐步量产,公司自动驾驶方案将迎来需求高峰。

4.2.经纬恒润:实力强劲的智能汽车电子厂商

与Mobileye保持紧密合作,有较高市场地位。经纬恒润很早便与Mobileye公司开展合作,年,基于Mobileye的辅助驾驶系统ADAS打破了国外公司在该领域的垄断,目前已完成四代系统迭代。基于Mobileye技术研发的前视主动安全摄像头使公司在前视系统市场中占据领先地位。作为Mobileye在中国的本土合作伙伴之一,相关产品与服务得到客户广泛认可,技术水平也在国内供应商中处于领先地位。Mobileye的黑盒交付模式受市场诟病较多,未来不排除经纬恒润可能也会选择其他芯片方案。

积累丰富客户资源,ADAS销量持续上涨。先进辅助驾驶系统(ADAS)产品已经配套了上汽荣威RX5车型、一汽红旗H5/H7/H9/HS5/HS7/E-HS3/E-HS9、吉利博越Pro/新缤越/帝豪、一汽解放J6/J7、重汽豪沃T7等车型。年至年上半年,其产品销量分别为6.75万套、10.18万套、30.67万套和27.23万套,预计产品销量会持续上涨且增速显著。

智能驾驶域控制器满足高级自动驾驶功能优化需求。智能驾驶域控制器(ADCU)基于MobileyeEyeQ4芯片,能够实现高精度、高算力、低能耗的智能驾驶系统方案,可实现在高速公路或城市快速路场景、交通拥堵场景的安全、精准、稳定的自动行驶,满足高级自动驾驶功能不断优化升级的需求。年,该产品已经配套一汽红旗E-HS9车型量产。

综上,在智能驾驶领域,经纬恒润可实现多种智能驾驶功能,并且不断升级优化,满足客户多样化的需求,充分提高市场竞争力。

多项业务高速发展,实现整体快速成长。根据公司招股说明书显示,车身和舒适电子、智能驾驶电子、智能网联电子、研发服务及解决方案在-两年复合增速分别26.92%、17.23%、.44%、86.69%、1.37%,成长性较高。公司和年营业收入同比增长19.91%和34.35%,与车市疲弱形成反差。公司预计,年营业收入为30-33亿元,同比增长21.03%至33.13%;预计归母净利润8,万元至13,万元,同比增长8.56%至76.41%。受益于汽车电子行业的发展趋势以及国内市场需求的快速增长,公司产品出货量呈现较大幅度增长,实现公司整体快速成长。

4.3.华阳集团:智能座舱优质标的,HUD加速渗透

华阳集团W-HUD市场份额处于领先地位。高工智能汽车研究院相关数据显示,年上半年在我国的W-HUD市场中,华阳集团占据14.44%的市场份额,排名前三,市场占有率增速明显。在相关研究报告统计的年全球车载HUD市场份额中,华阳集团排名第六。在国内供应商中,华阳处于第一阵列位置,预期未来进一步加速渗透。

AR-HUD拥有市场先发优势,或将成为新的盈利增长点。华阳已经研发出基于TFT和DLP两种技术的AR-HUD,并且在年第四季度搭载广汽传祺新一代GS8量产上市,成为国内首个量产的自主供应商。国内其他供应商大多处于研发阶段,计划年或者年量产。而华阳集团率先推出了AR-HUD量产产品,以落地产品形成最好的宣传手段,预计年华阳AR-HUD将搭载奇瑞及长安新能源等车型进行量产,预期将获得更多车企定点,成为新的盈利增长点。

紧跟前沿技术水平,规划光波导AR-HUD研发。基于光波导技术的AR-HUD将会是未来的重点发展方向。HUD产品为满足车规级的要求,受制于光路设计,光学零部件的体积一般比较大,从而大大增加了制造成本。因此,业内开始研究全息光波导技术,德国大陆集团预期有望在年中旬将激光+光波导技术AR-HUD在车载领域实现商用。华阳集团也紧跟步伐,已经开始规划基于光波导技术的ARHUD3.0产品,预计立体体积将小于4L。

华阳HUD具有明显价格优势,将加速市场渗透。W-HUD产品(包括W-HUD1.0和W-HUD2.0)均不超过0元,基于TFT的AR-HUD产品价值在0元左右,基于DLP的AR-HUD价值0元左右,低于国外供应商产品的价格。当前,众车厂面临降低成本的压力,在装载车型下沉的趋势下,高价位产品推广有局限性,而华阳集团的产品具有明显的价格优势,预期将会是以“降本”为目标的车企的首要选择。

客户方面:深度绑定大客户、拓展新客户,驱动华阳HUD业务收入提升。1、华阳与长城汽车深度合作,受益于长城的新车周期。华阳已经绑定了长城汽车包括哈弗H6、H7、长城F7、初恋、WEY系列在内的20多款车型,其中哈弗SUV车型常年保持市场领先的销售量。且长城汽车未来新车型也将配置HUD,华阳集团HUD业务将受益于长城的新车周期,实现产销的进一步提升。2、华阳HUD在长城汽车重点车型的配套比例较高,基本达到50%以上的配套率。其中初恋车型配套比例达到70%,第三代哈弗H6配套比例60%。在这样较高的配置比例下,长城汽车合作车型在市场中热卖将驱动华阳HUD产品订单量的增长。3、正不断开拓合资品牌客户,进入了多家国际品牌车企的供应商体系。华阳W-HUD产品已经获得合资品牌东风本田汽车的定点,预计于年进行量产落地。此外,公司正在积极与东风本田之外多家合资车企沟通合作,预计年将会是华阳集团HUD项目收获更多合资品牌项目定点的丰收之年。

布局座舱域控制器,预期未来加速放量。华阳以高算力SoC芯片为基础,将多个不同操作系统和安全级别的功能融合到一个平台上,以高性能、高集成、高扩展性等满足个性化需求,推出可实现如下多重功能的座舱域控制器:(1)充分满足车企“一芯多操作系统”研发需求,降低复杂功能的开发难度和整车电子成本;(2)支持多屏无缝联动;(3)增强车内感知,助力提升行驶安全。(4)助力车企优化运营管理,使整车厂可以更好地通过OTA升级持续地改进车辆功能,提升用户粘性。目前,公司基于高通、瑞萨、芯驰等多种芯片方案研发座舱域控制器产品,其中瑞萨H3版本已经获得项目定点,基于芯片的域控制器具备高算力、高集成度和扩展性,可集成包括HUD等产品。

(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)

精选报告来源:。




转载请注明:http://www.180woai.com/afhpz/1461.html


冀ICP备2021022604号-10

当前时间: